おそらくショーに出ていた半分近くの商品はジェム用や宝石細工やジュエリー用のもの、または別の良質な標本の残りのようなものでした。良質な鉱物を売っていたいくつかの店としては、Wayne Leicht from Kristalleさんや初台愛石館さんが思い当たります。これらのお店には世界各国の良質の標本がありました。
Well, I am not sure where I should begin….it has been such a great experience!
We had never been in Japan before, so this was the perfect excuse to do some tourism as well as work. This is what we did:
We arrived to Tokyo the 1st of June, after a 11.5 hours flight from Perth, Australia. Luckily, Tokyo is just one hour ahead from Perth, so we didn’t get any jet lag.
After arriving to Haneda Airport, we took the limousine bus to the hotel. I know it sounds very posh, but it is just a normal bus that goes from the airport to Shinjuku Station and to a wide range of hotels. If you ever go to Tokyo, this is one of the best ways to get from the airport to the hotel. It is cheap (around $12, whereas a taxi might cost you $60 or more!), fast, and you can buy the tickets at the airport.
Since our arrival at the airport we started to realize that in Japan you feel like all is going smoothly. Is it true? Well, keep reading!
The 3rd of June was the first of two set up days and many dealers were rushing about to get their shipments!
TIMA mineral show Tokyo 2014, loading area
The TIMA Mineral show was opened to the public from the 6th to the 10th of June.
Professionals day at the TIMA mineral show 2014
The 5th was also opened, but only for dealers and mineral professionals like museums, etc. So we had some days before the show to get to know Tokyo. We visited the Imperial Palace and its gardens, walk around Marunouchi and Ueno areas and ate some some incredible tasty sardines in Shinjuku! So far so good!
Sardines at Shinjukukappo Nakajima restaurant. We would definitely recommend this place for a traditional Japanese lunch.
It took us two days to get everything ready for the show. We had to set up the minerals in the glass show case and table they had prepared for us, write the prices, put some more lights… Of course it wasn’t only mineral work: we also had time to go out for lunch and hang around Shinjuku and buy all the neccesary stuff we needed for the show. It was our first mineral show ever, so we forgot lots of things!
We discovered Tokyu Hands, where you can buy almost anything. There we bought plastic bags, japanese plugs, multiple conectors or some clamps to hold the lights inside the glass show case! Honestly, anything to need, go there!
Another very usefull shop is the 100 yen shops. There are many of them in Tokyo, and you can get lots of things for around $1. We bought a notebook, stickers for the prices, a calculator…
We would like to thank you all awesome TIMA stuff, as they are very professional and at the same time, very friendly. Specially Akiko who had to deal with Juan about the kind of lighting used at the show!
Our space was small, just one table, but enough for us. It was in a good location near the entrance of the main hall. Moreover, we felt like in our own country due to so many people around us speaking Spanish! Among them, we conversed with Alfredo Petrov, who speaks a fluently Spanish after many years working as a geologist in South America. He brought a nice selection of rare mineral specimens to the fair.
Probably around fifty percent of the material offered at the fair consisted in gems, lapidary material and jewellery, being the rest mineral specimens of different qualities. We could highlight the quality of a few mineral dealers like Wayne Leicht from Kristalle and Hatsudai-Aisekikan, both with fine quality worldwide minerals.
There were also a few sellers with magazines about mineral collecting, books, guides for beginners collectors, etc.
We bought this Japanese mineral magazine with some nice fluorites and pyrites from Spain
We brought with us mainly minerals from the famous fluorite localities of Asturias, Spain: La Collada, La Moscona and Emilio Mine, plus some other specimens from Spain, Portugal and Morocco.
Juan trying to keep all labels in order
During the fair many of our young and not so young Japanese Twitter followers visit us and we enjoyed chatting with them face to face! It was great to know you! Thank you for your support!
Almost each day we alternate the mineral fair with some extra activities like visiting the Oedo Antique market where we found some nice fossils and a few minerals!
Fossils for sale at the Oedo Antique Market, Marunouchi, Tokyo
What we missed is a mineral market held in Iidabashi Tokyo at the same time that TIMA fair. Iidabashi is not far from Shinjuku, the suburb where TIMA fair is held.
Mineral Market in Iidabashi, Tokyo
Now we are back in Australia and we feel that we have to go back to Japan next year… So see you then!
El descubrimiento de los rayos x y su difracción por los cristales supuso un gran avance del conocimiento científico. Toda sustancia con un orden interno produce un diagrama de difracción de rayos x único. Si hubiera más de una sustancia en un mismo cristal, cada uno mostraría su diagrama independientemente de las otras.
Los rayos x fueron descubiertos en 1895 por Röntgen, por ello le concedieron el Premio Nobel en 1901. El pensó que no tenían nada que ver con la luz, más tarde se demostró que los rayos x son otra onda electromagnética más, como los rayos ultravioleta, los gamma, las ondas de radio o la luz visible. El ser humano no puede ver la mayoría con sus propios ojos.
El espectro electromagnetico. Figura adaptada según aparece en las páginas del Berkeley Lab
Max Von Lauë, premio Nobel en 1914 por su descubrimiento y demostración de la difracción de los rayos x por los cristales, confirmó la longitud de onda de los rayos x. Sus primeros experimentos en este campo fueron con un cristal de esfalerita.
Sir William Henry Bragg y su hijo William, premios Nobel en 1915 por sus estudios sobre determinación de la estructura cristalina de muchos minerales, formularon de manera sencilla como se difractan los rayos x en los cristales. (Ley de Bragg)
¿Cómo se producen los rayos x?
El equipo genera mediante un transformador un voltaje (diferencia de potencial) entre el cátodo y el anticátodo. Al chocar los electrones contra el anticátodo se frenan, perdiendo esa energía total o parcialmente. La energía perdida se emite en parte como radiación x.
Los difractómetros que se utilizan para el análisis de minerales son relativamente sencillos, aunque no por ello baratos, ya que un equipo nuevo ronda los 120.000 euros. Estos equipos disponen de un generador de alta tensión (unos 5000 vatios) que se suministran al tubo de rayos x, que es donde se produce la radiación.
Cuando los electrones golpean el anticátodo se producen dos tipos de radiación x: blanca y característica. La blanca solo depende del voltaje que pasa por el cátodo. La característica depende del material del anticátodo, puede ser de Cu, Mb, etc Esta última radiación también se llama monocromática, y se debe a transiciones electrónicas en los átomos del material del anticátodo.
Vamos a ver lo que significa la difracción para luego poder aplicarlo a los rayos x:
La difracción es la deformación que experimentan las ondas cuando encuentran un obstáculo en su camino. Por ejemplo, las olas del mar se difractan si encuentran una isla en su recorrido. Las olas son también ondas y se “doblan” cuando algo interrumpe su paso. Cuando hay varios obstáculos hay interferencia de ondas. A veces interferencia y difracción de rayos x se utilizan indistintamente. Los rayos x se pueden difractar, los minerales actúan como redes de difracción para los rayos x, ya que el interior de los minerales son infinitos obstáculos periódicamente dispuestos, y lo más importante para entender la difracción de los rayos x por los minerales, la separación entre esos obstáculos es muy parecida a longitud de onda de los rayos x.
En los cristales la luz visible se refracta, es decir, en su interior la luz cambia de velocidad. Sin embargo los rayos x no cambian de velocidad en el interior de los cristales, al menos apreciablemente. Es decir no se refractan. Tampoco los rayos x son reflejados por la superficie de los cristales pero si que se absorben en función del mineral que sea. Por ello los cristales antirradiación x tienen plomo en su composición para que la radiación no llegue a las personas.
Funcionamiento del difractometro:
Para entender la ley de Bragg y el funcionamiento del difractómetro de rayos x hay que tener en cuenta la estructura interna de los cristales. Ese orden periódico que tiene cualquier mineral es lo que hace que en el haya planos, en esos planos están ordenados esos obstáculos de los que antes hablábamos. Para que se difracten los rayos x se debe cumplir la ley de Bragg que dice que el ángulo de incidencia es igual al de difracción. Como existen diferentes planos, si tuviéramos el haz de rayos x, la muestra y el detector de radiación estáticos habría planos que no cumplirían la Ley de Bragg. Por lo tanto sabríamos muy poco del cristal, ya que para saber de que se trata la muestra, debemos de lograr que se cumpla la ecuación de bragg para todas las familias de planos.
Esto se puede lograr de varias maneras, pero la más sencilla es hacer polvo la muestra a analizar, esto hace que haya pequeñísimos cristales del mismo mineral pero diferentemente orientados. El haz de rayos x incide en la muestra, y únicamente en los cristales con los que forma un ángulo concreto sale difractado un haz de rayos x. Por lo tanto como puede imaginarse hay cantidad de pequeños fragmentos de mineral (deben tener un tamaño inferior a 30 micras) que por su disposición en el espacio no cumplen la ley de bragg, por lo que estos no ayudan a definir la estructura del mineral.
El detector de rayos x va formando un arco sobre la muestra para detectar las diferentes intensidades difractadas. Este detector electrónico se basa en la capacidad de ionización de los rayos x. Antiguamente se usaba como dispositivo para detectar los rayos x, una película fotográfica. En el difractograma de rayos x veremos una serie de picos a diferentes angulos y con una intensidad determinada.
The Picos de Europa mountains extend to the north of the Cantabrian mountain range with an approximate surface of 500 km2, and its dimensions are more or less, 35 km east to west and, 15 km north to south.
Central Massif. Cantabria, Spain. Juan Fernandez Buelga photo.
On the 22nd of July 1918, Don Pedro Pidal, marquis of Villaviciosa, managed to give free way to the first of the Spanish laws which appeared on National Parks, approving therefore the National Park “Montaña de Covadonga”; first National Park in Spain, with a surface area of 16,925 hectares. More than seventy years had to pass so that a new law, enlarging the National Park established limits, was approved by Parliament. On the 30th of May of 1995 the National Park of “Picos de Europa” was declared; embracing an extension of 64,660 hectares, converting it not only in the largest National Park Spain, but also in Europe.
The Picos de Europa mountains were originated by the sedimentation of submarine limestones 3,000 metres thick, during the Carboniferous Period of the Primary Era, comprising from 345 million years ago up to 280 million years ago. The slates, sandstones and conglomerates, all form the valley material surrounding them. 220 million years ago, in the Hercinian folding, the first mountainous relief arised, producing an elevated horst between the depressions of Liébana and Cares, to rise definitively in the alpine folding of the tertiary Era, 65 million years ago.
The Pyrenees and the Alps were also formed this way, compressing the calcareous mass south to north, in the sea direction. Then, the limestone masses deeply fractured with such folding, and upon rising, this fragmentation formed three big blocks with enormous cracks affecting the whole group south to north, and getting wider due to the glacial erosion. Later these blocks would suffer a great fluvial type erosion, slowly developing into the majestic shape of the mountain gorges known today, communicating the valleys with the sea. Four big gorges stand out, consequence of all this great process originated along centuries in the mountainous group of Picos de Europa: The gorge of “Los Beyos”, out of the river Sella; the Cares gorge, well-known as the “Divine Throat”, furrowed by the river Cares and most visited by mountaineers and tourists; the Valley of Aliva and the gorge of “La India”, where the river Duje flows; and, finally, the famous gorge of “La Hermida”, furrowed by the river Deva, which sprouts in Fuente Dé, on the foot of the rocky circus contemplating the cable car of Fuente Dé. The Cares and Duje rivers unite near Puente Poncebos and later the Deva river will join them in Panes, finally ending in the ria of Tina Mayor in Unquera.
Tina Mayor, near Unquera, Asturias, Spain
“La Hermida” Gorge, Cantabria-Asturias, Spain
The current relief contemplated today in Picos de Europa is a result of all the folding, the glaciers´ action during the Quaternary period and the presence of karst formations (limestone dissolution landscape). The glacier remains (highland lakes, moraines, “llambrías”, etc.) are not as abundant as in other mountainous formations due to the break-up of limestone. This is because the glacier origin lakes tend to form chasms as water infiltrates through the limestone cracks; one could also talk about the “jous”, another peculiar characteristic in Picos de Europa; these are contiguous series of close depressions, almost circular in shape, which can reach 2 km diameter, and separated by big heights. In the “jous” the rain and melting snow can only escape through underground drains.
Jou in Picos de Europa mountains
The folding fractures and posterior action of underground water have created multitude wells and galleries, a paradise for those people who enjoy practising potholing. They consider Picos de Europa as mountaineers consider the Himalaya, having explored chasms already more than 1,000 metres altitude gap, very close to the world record in this speciality.
One of many caves in the Picos de Europa mountains
Many of these underground cracks were filled up in past geological periods with mineral defiles, mainly deriving from zinc, calamine and sphalerite (the gem variety of this last one is well known among mineral and gem collectors), as well as lead and manganese.
All these factors started a flourishing mining activity during the last century that continued until some years ago when the mines in Aliva closed.
The closed Las Manforas Mine also named Aliva Mine. Great samples of gem sphalerite were extracted from it a few decades ago. Agustin Fernandez photo
The valleys, with their characteristic U shape, are witnesses of past glaciers; the “jous”, the “llambrías”, and the polished and grooved rocks on the surface. The karst formations have their origin in the dissolution of limestone through rainfall, due to their light acidity. Limestone is quite impermeable and water can only enter through the cracks, accumulating in underground rivers, lakes and other formations inside caves and underground galleries. The underground water emerges in fountains at the foot of the mountains; then the karstic formations of limestone dissolution absorb the water and originate the chasms, “jous”, cracks, caves and galleries making up the group of Picos de Europa, unique for the practice of sports like potholing, canyon descent and, especially, the most extended practice; rock climbing up to the famous peaks (part, not only of our history, but also of some tragic moments in this marvellous mountains), like the “Naranjo de Bulnes”, also called “Pico Urriello”.
Pico Urriellu, Picos de Europa, Asturias
The quaternary glaciations, like those of Würm, caused that the Picos de Europa mass was one of the most important points of glacier formations in the whole of the Peninsula, covered by an ice cap reaching the 1,000 metres altitude. This way, the glaciers of Lloroza, Deva, Bulnes, etc., were formed; later leaving their print marked in the mountains.
In Picos de Europa the relief is very uneven, with big altitude differences and peaks widely surpassing 2,000 metres, like Torre Cerredo (2,648 metres) or Peña Santa de Castilla (2,596 metres). The mountainous group extends over the territory belonging to three Autonomous Communities: Cantabria, Principado de Asturias and Castilla y León, and it is divided in three massifs, whose limits are determined by the rivers: Deva, Duje, Cares and Sella. Ten are the municipalities contributing territory to the National Park.
In Cantabria: Tresviso, Cillorigo and Camaleño.
The Principado de Asturias: Peñamellera Baja, Cabrales, Amieva, Onís and Cangas of Onís.
In Castilla y León: Posada de Valdeón and Oseja de Sajambre.
As we have said previously, Picos de Europa form three important well-known massifs: Macizo Oriental (eastern massif), also called “Andara”, Macizo Central (central massif), or “Urrieles”, and Macizo Occidental (western massif), or Cornión.
Climate
Due to the proximity of Picos de Europa to the sea; little more than 20 km, and because they are north of the Cantabrian mountain range, as well as their altitude above sea level, all condition the humid air masses affecting the area. When these get to the coast, they lift cloud fronts with the following condensation, which provokes frequent rainfalls.
A weather characterised by a high humidity and little light, conditions the weather peculiarities of Picos de Europa. Both, the North and Western winds are the most dominant in the area, as well as the ones causing the presence of clouds and snow on the mountain massifs. The NW ones are those which clean back the atmosphere.
The presence of snow is specially accentuated over the winter months, specially from December, but snow patches are not rare at all, staying permanent in many places of Picos de Europa. Avalanches are also frequent in those areas where the slopes are steeper, so it is dangerous to walk in the mountains under those slopes with a combination of thick snow and sun exposure; one of those routes is the one between “La Vueltona” and “Horcados Rojos”, in the Central Massif.
Winter at Picos de Europa
Within such special weather conditions area, it is frequent to see the popular and frightful mist, making sight difficult and disorienting tourists and mountaineers, with the added danger of being in a rugged relief area. But many times this is compensated by a dense mist developing over the valley when we are at a summit and it seems as if we have an immense cloud sea at our feet. This is for sure one of the most intense contemplation moments for a mountaineer in Picos de Europa.
La Teoría Cristalina se basa en tres importantes postulados, son estos:
– Postulado Reticular; el cristal es un medio periódico infinito definido por una de las catorce redes de Bravais.
– Postulado estructural; el cristal posee una estructura atómica y la simetría de esta corresponde a uno de los 230 grupos espaciales ( 32 clases de simetría puntual + 14 redes de Bravais)
– Postulado energético; los atomos en la estructura cristalina ocupan posiciones de equilibrio para los cuales la energía es mínima.
Por todo esto, la teoría cristalina nos proporciona una idea del cristal donde el orden, existe, manda, en todo momento. Pero la realidad es muy distinta, el cristal real no es un ente atómico perfecto, sino que esta lleno de defectos. Por ejemplo, un cristal de Fluorita se origina por la aposición de miles de millones de átomos, y en este proceso es muy posible que se generen errores en su estructura. Estos errores son los que hacen que cada especimen mineral sea único e irrepetible. Estas imperfecciones son una característica esencial del cristal. Pero solo puede existir un número finito de imperfecciones en el cristal ya que de lo contrario dejaría de ser un sólido cristalino.
Tipos de imperfecciones en los cristales:
Relativas a su extensión
La primera imperfección del cristal es su propia limitación, la teoría cristalina considera que la materia cristalina es un medio periódico infinitamente extendido en las tres direcciones del espacio. Pero un cristal real esta limitado en el espacio por caras, por otros cristales adyacentes, o por otros materiales. Por ejemplo un cristal de fluorita puede crecer en una grieta de roca caliza, la estructura de la fluorita se ve limitada en ese caso por la caliza.
En este caso, un cristal de azufre estuvo limitado en su desarrollo al crecer dentro de una pequeña grieta en la roca.
En las caras de los cristales existe un estado de no saturación, por ello tiene tendencia a absorber partículas creando por ejemplo epitaxias o películas orientadas. (Definición de epitaxia: es el crecimiento de cristales de un mineral en una cara cristalina de otro mineral (puede darse entre minerales iguales, homoepitaxia), de forma que el sustrato cristalino de ambos minerales tiene la misma orientación estructural. Existe, homoepitaxia o heteroepitaxia según los materiales sean iguales o distintos.
Cristales de siderita sobre ferberita. En los cristales de siderita se aprecia un crecimiento epitaxial. Se trata de un crecimiento de dolomita sobre siderita.
Relativas a su composición
Los minerales no suelen ser sustancias puras, un mineral puro es algo excepcional. La mayoría presenta una variación en su composición química.
Impurezas en un cristal de calcita, estas pueden orientarse siguiendo el crecimiento del cristal, formando interesantes dibujos geométricos.
Si el átomo que se incorpora a la estructura es muy pequeño puede situarse, sin alterarla profundamente, en los espacios interatómicos existentes, llamados lugares intersticiales.
Romboedros de calcita coloreados de verde debido a la existencia de cobre en su composición. En la parte derecha de la imagen, pequeños cristales de azurita.
Las impurezas del medio pueden ser englobadas por el cristal que crece, a estas impurezas se las llama inclusiones. Por ejemplo, no es raro que el cuarzo tenga cristales de otro mineral dentro de él. Un caso muy vistoso son los cristales de cuarzo en la mina Panasqueira en Portugal, donde los cuarzos pueden contener cristales de apatito, arsenopirita, ferberita, turmalina, etc.
Inclusiones de arsenopirita en un cristal de cuarzo de la mina Panasqueira, Portugal.
Relativas a su integridad estructural
El cristal ideal requiere una continuidad perfecta de la red cristalina. La integridad estructural del cristal sufre cuando se rompe esta continuidad de la red. Las imperfecciones más importantes que afectan a la continuidad de una red son las dislocaciones. Las imperfecciones que tiene un cristal real hacen aumentar su energía, pero este tiende a configurarse de la forma más estable posible, es decir con las mínimas imperfecciones. El cristal ideal tiene una estructura cuya energía es mínima. Como la eliminación total de imperfecciones es imposible las concentra en regiones de su estructura y adyacentemente a estas regiones mal formadas estan otras bien formadas. Esta es una idea a la que se llegó gracias a la aplicación de los rayos-X al estudio de los cristales.
Relativas a su dinámica
El cristal es un medio dinámico y su entorno, la naturaleza, también lo es, y como tal puede sufrir procesos de corrosión, meteorización, cambios de fase (polimorfismo).
El polimorfismo es una característica de algunas sustancias o elementos químicos para cristalizar en más de un tipo de estructura. Las diferentes estructuras que puede crear una misma sustancia o elemento se llaman formas polimorfas o polimorfos. Por ejemplo el elemento C puede dar, según las condiciones existentes, dos minerales el grafito y el diamante. La sustancia SiO2 puede dar cuarzo bajo, cuarzo alto, tridimita alta, cristobalita alta, coesita y estisovita. Y todas tienen un grupo espacial distinto. Son minerales diferentes pero tienen la misma fórmula química.
Dimensiones de los defectos cristalinos
Defectos puntuales, un lugar vacante en una estructura que afecta a solo un átomo. La introducción de impurezas en una estructura no representa un cambio importante en ella , ya que las impurezas entran en cantidades muy pequeñas y solo producen alteraciones locales sin efectos importantes en la estructura general. Isomorfismo: hay particulas que forman estructuras de igual dimensión y geometría pero cuya composición química es distinta.
Defectos lineales, dislocaciones, afecta a una serie lineal de átomos. Una dislocación es una discontinuidad en la estructura a lo largo de una fila reticular.
Defectos bidimensionales, son el resultado de una anomalía en un plano reticular. La cara de un cristal es un defecto bidimensional ya que la condición de no saturación de las valencias de los átomos que la forman, hace que se introduzcan efectos que la distinguen del resto del cristal. Los defectos bidimensionales más importantes son los defectos de apilamiento se definen como irregularidades en la secuencia de planos atómicos en una estructura. Estas irregularidades pueden aparecer solo en determinadas circunstancias o bien aparecer siempre en determinados compuestos, por ejemplo el grupo de las micas, cuando esto ocurre la secuencia “anómala” pero común a estos compuestos se denomina politipo y al fenómeno politipismo. Es una variedad especial de polimorfismo. La esfalerita (ZnS) y su polimorfo la wurtzita (ZnS) es un caso de politipismo. Los iones (s2-) en la esfalerita poseen un empaquetamiento cúbico compacto mientras que en la wurtzita poseen un empaquetamiento hexagonal compacto.
Defectos tridimensionales, la mayor parte son inclusiones que rompen la continuidad del cristal en una parte.
Asturias is a treasure, situated to the north of the Iberian peninsula, made up of numerous gems such as its scenery, its art, its history and traditions, its gastronomy and its people. Asturias´ natural beauty surprises, attracts and ensnares. Should we seek a colour to define it, this would be the green of its valleys, with their meadows, mountains and abundant forests. A colour that on sunny spring and summer days takes on an intense shine, and which in autumn is transformed into a melancholic mixture of reds, ochres and browns that both fascinates and impresses.
Barayo, Asturias, north of Spain
Another gift to the eyes is its coastline peppered with beaches; some sweeping and exposed, others small and more secluded. A postcard that no one should miss.
Buelna beach , Llanes, Asturias, north of Spain
Asturias is a magnificient open-air museum with outstanding, diverse scenery in a territory that is always close at hand, a mix of sea and mountains, in which travellers will come across coastal ranges and fantastic valleys through which the short yet mighty Astur rivers sprightly flow.
Infierno River, Asturias, north Spain
The plant and animal worlds are also extremely varied, with copious forests of beach, oak and chestnut, inhabited by quasi-mythical animals that are extremely difficult to catch a glimpse of, such as the capercaillie, the brown bear or the chamois, which accompany the wolf, the wild boar and the deer.
Bear. Proaza, Asturias, Spain
Natural beauty deserves recognition, and accordingly almost a third of the region has been declared a Protected Nature Area (Biosphere Reserves, National park, Nature Parks…). However, all this nature is not only to be enjoyed by contemplating it, but also allows a host of activities to be carried out that cater for all tastes and conditions: hiking, cycling, pony trekking, canoeing down rivers, rock climbing, hunting and fishing, skiing, surfing, and all of those open-air activities that respect for nature allows.
Near Somiedo, Asturias, north Spain
This small an ancient kingdom of Asturias conserves a culture and traditions spanning millenniums. The region boasts a splendid history: Palaeolithic remains (the caves of Tito Bustillo, Candamo, El Pindal, El Buxu…), pre-Roman hillfort culture (with hundreds of documented fillforts), Roman remains, churches, manor houses and palaces that cover all ertistic periods, from Romanesque to the most contemporary art, not to forget of course Asturian Art, which is unique and listed as Heritage of Mankind. Art lovers may round off their tour of Asturias by visiting its museums, where they will discover fabolous local painters through which to better acquaint themselves with the past and ways of life of the Asturian people. However, all this spectacle of history and scenery that is Asturias would not be complete without all its “handsome” seafaring or mountain folk and villages; or its cities, which still conserve the charm of a medieval past.
Santa Maria del Naranco, Oviedo, Asturias, north of Spain
The region may also boast of its gastronomy. The sea, fields and mountains offer up everything that one could wish for, and not only for traditional cuisine. Nowadays, new dishes are prepared that, alongside time-honoured cooking, make this place not only a natural paradise, but also a paradise of fine eating: Fabada and pote stews, seafood (crab and goose barnacles), fish (hake, anglerfish…), roxa beef, lamb, and of course a great variety of cheeses (Cabrales, Casín, Oscos…). For those with a sweet tooth, deserts such as rice pudding, walnut or hazelnut pastries, pancakes… All washed down with cider, the Asturian drink par excellence, and a full belly is guaranteed.
Asturian gastronomyAsturias is one of the best regions of Spain to taste an awesome varieties of cheese.“Sidra” in the beach. Cider is the most classic alcoholic drink in Asturias
This land of traditions is also rich in ethnography and folklore: hórreos, quintanas, casonas de Indianos, old chapels, handicrafts, ancestral traditions, languaje, music and dances that come down to us from the remotest past…and romerías, which favour the magic of the night, just like its mythological beings, such as pucks or wood nymphs.
Asturias, the west
The west of Asturias is an extensive maritime facade formed by sweeping beaches, rocky coves and cliffs, from which endless green valleys advance deeply inland. Villages full of stony authenticity emerge there from the earth itself, as well as the fishing villages on the banks of the River Eo, with their white and slate grey countenance, adapting to the lay of the land as they climb the hillsides and hang over the sea.
Cabo Peñas, Asturias, north of Spain
This is a land of forests and surprising scenery that is rich in history and which presents itself to visitors resplendent with mists, dolmens, hillforts and ancestral traditions. It boasts an specially interesting artistic heritage an stunning scenery full of silence, peace, tranquillity and grandeur. There exists here a profound respect for nature; with which men, animals and -according to the legends- disquieting mythological creatures have coexisted sinde time immemorial.
Dolmen de Merilles, Asturias, north of Spain
What to see
Visit the brañas vaqueiras or mountains hamlets of itinerant herdsmen, the hillforts of San Chuis, Chao San Martín (under excavation) and Coaña, the Roman gold mines of Besuyo or Naviego, Corias Monastery, the World Biosphere Reserve of Muniellos Forest and the Sources of the river Narcea, Degaña and Ibias, the remarkable Folk Museum of Grandas de Salime, Barayo Nature Reserve, which is like a journey into the past on account of its wild, natural state, the ethnographic sites of Os Teixois, Mazonovo and Esquíos (in the borough of Taramundi), the magical territory of Los Oscos (the boroughs of Villanueva, San Martín and Santa Eulalia), the Roman mines of Campos and Salave, Luarca cemetery, the protected landscape between Capes Vidío and Busto, Selgas Palace and its grounds… and so on, an endless list of small villages and magnificent scenery to see and enjoy. The West is the still-to-be-discovered magnificent treasury of nature, ethnography and traditions of Asturias.
Cudillero village, Asturias, north of Spain
Asturias, the centre
In the outstanding coastal scenery, awe-inspiring cliffs, islets and beaches alternate with small fishing harbours like that of Candás and large commercial ports like those of Avilés and Gijón. Valleys and meadows follow on from one another, dotted with small villages and farmhouses, surrounded by the most important towns and cities of Asturias. To the south lies the mountain pass of Pajares, a milenary link with the plateau. But there are also the mining valleys of the Rivers Caudal and Nalón, and Somiedo Nature Park. All this in the narrow strip that goes from the see to the mountains. Central Asturias is a treasure trove of numerous prehistoric sites (such as the cave at Candamo), the pre-Romanesque art, declared Heritage of Mankind, and the Middle Ages via the historical quarters of Oviedo, Gijón and Avilés. Palaces, churches, industrial remains and cities brimming with art and culture. The central area is the domain par excellence of cider, the beverage of Asturias, which must be enjoyed in the atmosphere of its traditional chigres.
Oviedo cathedral, Asturias, north of Spain
What to see
The historical quarters of Oviedo, Gijón, with its venerable fishing quarters of Cimadevilla, and Avilés. Noega Hillfort and the Roman baths in Gijón. Pre-Romanesque monuments, from Santa Cristina de Lena to Valdediós, passing through all the pre-Romanesque gems of Oviedo, its Cathedral and Sacred Chamber. Museums (diocesan, art galleries, archaelogical, folk, clog, dairy, the Water House, the Armando Palacio Valdés House-Museum, Mining and many more). Fishing ports and Gijón marina. The Protected Landscape of Cabo Peñas. The Aramo Range. Asturian mountains villages. The collection of hórreos in Cenera, Bueño, Gallegos and Insierto. Indigenous flora and fauna in Somiedo Nature Park, and innumerable natural resources in their pure state (forests, rivers, alpine valleys) to which must be added all the cultural ativities that cities like Oviedo and Gijón offer the whole year through: theatre, an opera season, zarzuela, concerts…
Asturias, the east
Eastern Asturias is a land of great contrasts that is characterised by the diversity of its scenery: the inland area of alpine mountains with their forests and valleys through which excellent salmon and trout fishing rivers flow down to the coastal strip dotted with a succesion of smooth beaches of fine sand and crystalline waters and tormented cliffs that spout sea-water through their famous bufones (blowholes). Coatal ranges, such as those of El Cuera and El Sueve, which appear like scenic vantage points overlooking the sea over which the legendary Asturcón pony runs free. Behind these arise the majestic Picos de Europa. Traces of the remotest past of humanity are present in the caves of Tito Bustillo, El Pindal or La Covaciella, although the most ancient are the ichnites or fossilised footprints of dinosaurs that can be seen along the coast from Villaviciosa to Ribadesella. All the villages of the East celebrate their patron saint´s day and keep their traditions very much alive: songs, dances, ramos (elaborated offerings of flowers and food), hogueras (similar to the maypole tradition) and the costumes bequeathed to them by their ancestors.
Peñamellera, Asturias, north of Spain
What to see
Eastern Asturias conserves all the riches of rural culture. The natural scenery is alive with small hamlets, with their houses and hórreos existing in perfectly harmony with the enviroment. A must on any visit to the coast are Tazones, Lastres, Ribadesella and Llanes. The Picos de Europa, the Sueve Massif, the magical River Cares, the secluded villages of Peñamellera, the Sanctuary of Covadonga, a spot suffused with mysticism and history, or Lakes Enol and Ercina are all essential destinations in the East of Asturias. Of interest also are the winding gorge of Los Beyos, the spectacular beech woods of Infiesto and scenic vantage points like those of El Fitu or Ballota. The valleys of the River Piloña, Ponga Range, the blowholes of Pría and Vidiago, or Villaviciosa Estuary are more tahn a sample of the natural riches of the area. There are numerous museums (the Eastern Folk Museum in Porrúa, the Jurassic Museum, the Cider Museum), the mysterious Peña tú stone idol, churches, palaces, manor houses, casonas, houses built by Indianos, and, of course, Pre-Romanesque art, the best example of which is Valdediós.
Texts of above are extracted from a book made by Casonas Asturianas. I strongly recommend this association of charming hotels in Asturias. http://www.casonasasturianas.com/
Asturias and all north of Spain is sometimes an overlooked part of our country, it is very different from other areas like the famous Barcelona or Andalucia region so probably you must visit Spain again!
Mining began in the district in 1898 but probably the Panasqueira mines (Portugal) were first worked for tin by the Romans and next by the Moors. In 1927 the mining concessions were taken over by Beralt Tin and Wolfram, Ltd. (a british company). Today Panasqueira is one of the biggests tungsten mines in the world and it is being operated by Sojitz Coorporation, a japanese company. The Panasqueira district have indeed several mines, known as Corga Seca, Barroca Grande, Panasqueira, Vale da Ermida and smaller ones. Some of them have closed many years ago like for example Val da Ermida, this last mine produced some of the best mineralogical examples of all Panasqueira district history.
The old Panasqueira Mines village in the 50’s, some miners still live here but the majority of them has moved to Barroca Grande village, where the main mine entrance is nowadays.The above mentioned village today. Long time ago hundreds of people lived there now just a few. Behind the tree you can see the old cinema. Juan Fernandez Buelga photo.
The ore deposits of the Panasqueira district are the leading source of tungsten in western Europe. The Panasqueira district is located in the Beira Baixa province about 34 km west of the city of Fundao, Portugal.
Old mine entrance
At least since 70´s the Panasqueira Mines are known among mineral collectors for the beauty of the minerals found there. In my personal opinion Panasqueira has given many of the best apatites in the world, but this mine is not only about apatites, it has produced a exceptionally large suite of other minerals that they also rank as the very best for the species. However the ammount of fine crystallized different minerals you can find in just one specimen is what sets apart this locality.
Blue greenish apatite on siderite crystals from the famous Panasqueira Mine. Spanish Minerals specimen. Juan Fernandez Buelga photo.
Sadly, the way mining companies have been operating this deposit does not help protecting the mineral art these mountains hide. Furthermore miners can loose their jobs if they remove minerals from the mine. Nevertheless miners risk their positions taking out a few specimens just to earn a few more euros to compesate their low salaries. These conditions plus the lack of time end up in a shortage of minerals where most of them are severely damaged. The situation is so bad that trading of minerals from the mine or visiting old mine workings is an offence, this makes Panasqueira mineral collecting even harder now..
Violet apatite with quartz. Panasqueira Mine, Portugal. Spanish Minerals specimen. Photo, Juan Fernandez Buelga.Superb arsenopyrite with minor quartz, siderite and fluorite. Panasqueira Mine. Spanish Minerals specimen, Juan Fernandez Buelga photo.
Geology of the mining district
The surface geology of the Panasqueira district is restricted to the tightly folded vertically-dipping pelitic Beira Schist which suffered greenschist-grade, regional metamorphism during the early compressive stages of the Hercynian orogeny. Original lithologies were principally argillaceous to arenaceous shales, graywackes, and fine grained sandstones. Taken as a whole this sequence, which is widespread in Portugal, has been referred to as the Beira Schist complex.
Although no granite crops out in the district, a granite cupola (Panasqueira granite) has been identified at shallow depths in the Panasqueira mine and is at least spatially related to the mineralization. Pervasive hydrothermal alteration of the Panasqueira granite prevents its lithologic correlation with other intrusive facies of the Hercynian granitic complex exposed elsewhere in Portugal. However, from its undeformed condition and the fact that it utilized late (post-regional metamorphic) joints in its emplacement, the granite was clearly intruded after the main compressive stage of the Hercynian orogeny. Isotope studies suggest that the Panasqueira granite is an S-type granite.
Map of Portugal showing location of Panasqueira and the distribution of Hercynian granitic rocks
Structure of mineralization
The prevailing horizontality of the Panasqueira veins is a feature of this district which sets it apart from other tin-tungsten deposits. The veins, which range in width from a few milimeters to more than a meter, cut across the altered granite cupola and steeply dipping Beira Schist thereby indicating the mineralization ocurred after emplacement and crystallization of the pluton.
Cross section of the Panasqueira cupola silica cap and cross-cutting flat veins.
Because the mineralization is open-space filling rather than replacement, this presents a special problem as to how the structures were initially dilated and then managed to remain open during the subsequent mineralization. Evidence suggests that the flat vein openings were created and supported by hydraulic pressures of the early tin-tungsten vein fluids (fluid pressures exceeded lithostatic pressures).
Mineralogy of the veins
Over fifty mineral species have been described from the Panasqueira deposits. Due to the coarse-grained nature of the minerals, the Panasqueira deposits have been known for their good mineral collecting. Although there is a rather complex paragenesis, the mineralogy is uniform laterally, composed dominantly of quartz. with lesser amounts of muscovite, topaz, tourmaline, carbonates, apatite, wolframite, cassiterite, and sulfides.
Sometimes small pockets with mineral rarities come up like this green – bluish quartz with brown calcite from the Panasqueira Mine. Spanish Minerals specimen, Juan Fernandez Buelga photo.
Vein paragenesis and alteration
The paragenesis is fairly complex because several minerals, including quartz, muscovite, and pyrite, were long-lived in the sequence and were precipitated in a repetitive manner. In spite of these complexities, four main stages of mineralization have been recognized and described: (1) the oxide-silicate stage, (2) the main sulfide stage, (3) pyrrhotite alteration stage, and (4) late carbonate stage. Economically, the first stage was by far the most important, because it includes the ore minerals cassiterite and wolframite.
Superb ferberite with marcasite. Panasqueira Mine. Fernandez Buelga Mineral Collection specimen. Juan Fernandez Buelga photoGreen apatite, Panasqueira Mine, Portugal
This specimen is one of the most aesthetically appealing apatites included by greenish schorl I have ever seen. The tourmaline acicular crystals have crystallized around the bases and inside of the glowing apatites. I like the stark contrast between the green inlcuded ones (near the thin rock matrix) against the big incolore one, which is far from the green schorl crystals so not included by them. Spanish Minerals specimen, Juan Fernandez Buelga photo.
“La mina más antigua en el mundo.” Así describe a la mina de Almadén Don Santiago de Alvarado y de la Peña en 1832.
Y así sigue..
“ALMADEN. La famosa mina de cinabrio, mercurio o azogue de la villa de Almadén, en la provincia de La Mancha, partido de Ciudad-Real, en el arzobispado de Toledo, merece ocupar el primer lugar, como que, según dice el ilustre Bowles, es la más rica para el estado. La más instructiva en su labor, la más curiosa para la historia natural y la más antigua que se conoce en el mundo. Teofrasto, que vivía trescientos años antes que J.C., habla del cinabrio de España; y Vitrubio, contemporáneo de Augusto, hace también mención de él. Los romanos creían que el mercurio era veneno, pero no obstante sus matronas se afeitaban (pintaban) los rostros con el cinabrio, y los pintores lo usaban para sus colores.
Cinabrio cristalizado de la mina de Almadén. Simonin’s Mines and Miners: Or Underground Life. 1869
Plinio dice positivamente que esta mina, de que hablamos, se cerraba y sellaba con la más exquisita custodia; y que solamente se abría para sacar la cantidad suficiente de cinabrio que se había de enviar a Roma. Es constante que labraron esta mina los romanos; pero después acá es tanto lo que en ella se ha revuelto que no quedan indicios de sus trabajos. Los moros no parece que la cultivaron, y quizá sería por la preocupación, que aun subsistía en su tiempo, de que el mercurio era veneno. La iglesia y gran parte de la villa (que es de 1987 vecinos u 8448 habitantes, según Miñano) están sobre el cinabrio, y todos ellos subsisten de la mina. Esta se comprende en un cerro de peñas de arenas que forman dos planos inclinados, y en la cima sale una cresta de peñas peladas en que se ven algunas pequeñas manchas de cinabrio, que naturalmente servían de indicios a los primeros descubridores de las minas: por lo restante del cerro se ven algunas vetillas de pizarras con venas de hierro, las cuales en la superficie siguen la dirección de la colina.
1768 Antique Copper Etching of Mercury Mine in Almadén, Spain, by Benard after Goussier from “Encyclopédie” of Diderot and d’Alembert
Todo este país abunda en minas de hierro; y lo que es más en la misma mina de Almadén se hallan a veces pedazos en que el hierro, el azogue y el azufre están tan mezclados entre sí que no forman cuerpos diferente. Los cerros vecinos al de Almadén son de la misma peña que este, y sobre unos y otros crecen las propias especies de plantas; de lo cual se infiere que la mina de cinabrio no exhala los vapores venenosos que se creen, y las exhalaciones mercuriales tampoco dañan a la vegetación ni a los hombres, pues un minero puede dormir con seguridad sobre una veta de cinabrio.
Antiguo minero español. 1905
Los presidiarios que allí se envían no padecen nada en la mina, ni sufren convulsiones, como se ha creído por mucho tiempo, ni hacen otra cosa que acarrear tierra en los carretoncillos; pero suelen fingirse paralíticos algunos de ellos para mover a la piedad y estafar algo a los que van a ver aquello. Cualquiera vecino del Almadén trabaja voluntariamente más de un doble que los forzados para ganar menos de la mitad de lo que le cuesta al Rey cada uno de estos. Dos son las vetas que atraviesan la colina a lo largo y tienen de dos a catorce pies de ancho. La piedra de estas vetas es la misma que la de lo restante de la colina y sirve solo de matriz al cinabrio, que es más o menos abundante; según la piedra que le contiene es de arena más fina o más gruesa. Se hallan en ella piritas y pedazos de cuarzo blanco, ramificados ricamente de cinabrio, y también espato ligero, y a veces cristalino, lleno uno y otro de la misma materia, ya en forma de rubíes, ya en hojas. Hay también pizarras llenas de lo mismo; y el Hornstein de los mineros se ve penetrado del cinabrio como si fuera de puntas de clavos. Por fin, se ve el azogue puro y natural en las quebraduras de las pizarras y de las piedras de arenas… …Pueden producir estas minas como 20 quintales de azogue.”
Habría que volver atrás 182 años para ver si todo lo que decía era verdad.